Ring-Closing Olefin Metathesis for the Synthesis of 1,8-Diazabicyclo[4.3.0]non-3-ene-7,9-diones

Alexey B. Dyatkin*
Department of Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc. 900 Ridgebury Road, P.O.Box 368, Ridgefield, CT 06877 USA

Abstract

A novel method for the efficient synthesis of 1,8 -diazabicyclo[4.3.0]non-3-ene-7,9-diones 5 (bicyclic hydantoins) starting from ureas or Z-protected aminoacids has been developed. The key step is a ring-closing metathesis (RCM) reaction of diallyl substituted hydantoins 3 catalyzed by the ruthenium-carbene complex bis(tricyclohexylphosphine)benzilidine ruthenium dichloride (4). © 1997 Elsevier Science Ltd.

Grubbs ${ }^{1}$ and Schrock ${ }^{2}$ have reported the use of efficient catalysts for the metathesis of nonconjugated olefins to form cyclic compounds. The ring-closing metathesis (RCM) reaction has thus become a powerful tool for organic synthesis. This was effectively demonstrated in the synthesis of a variety of carbocycles ${ }^{3}$ and heterocycles ${ }^{4}$ and in the total synthesis of natural products. ${ }^{5}$

We report herein the application of the commercially available ${ }^{6}$ ruthenium carbene complex bis (tricyclohexylphosphine)benzilidine ruthenium dichloride (4) for the synthesis of 1,8 -diazabicyclo[4.3.0]non3 -ene-7,9-diones 5 . These compounds have attracted the attention of a number of research groups due to their potential biological application and as templates in organic synthesis; for the preparation of these compounds two major approaches are known. ${ }^{7,8}$

We developed an alternative route to produce 1,8-diazabicyclo[4.3.0]non-3-ene-7,9-diones in moderate to good yields. Starting compounds for this synthesis can be easily prepared by the tandem cyclizationallylation reaction of Z-protected aminoacids 1^{9} or ureas 2^{10} (Scheme 1).

Scheme 1.

Reagents and Conditions: a) (i) NaH (4 eq.) (ii) allyl bromide (5 eq.), DMF, $0^{\circ} \mathrm{C}$. b) $4, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux
The addition of substrate 1 or 2 to a suspension of NaH (4 eq .) in dry DMF at $0^{\circ} \mathrm{C}$ followed by allyl bromide (5 eq.) provided the formation of 1,5-diallylhydantoins 3 in $70-85 \%$ yield. Derivatives of glycine ($\mathrm{R}^{2}=\mathrm{H}$ in 1 and 2) give $1,5,5$-triallylated products $3 \mathrm{~d}\left(\mathrm{R}^{2}=\right.$ allyl).

Intramolecular RCM reactions were performed in refluxing methylene chloride with $10 \mathrm{~mol} \%$ of 4 as a catalyst, ${ }^{11}$ and in all cases conversion of 3 was more than 95%. Results are presented in the Table $1 .{ }^{12}$ Surprisingly, compound 3d did not form any spirocyclic product, the lower yield in this case probably can be explained by cross-coupling polymerization.

In summary, we have described a short and convenient method for the synthesis of 1,8-diazabicyclo [4.3.0]non-3-ene-7,9-diones 5 (bicyclic hydantoins) starting from simple commercially available materials.

Table 1. Synthesis of 1,8-Diazabicyclo[4.3.0]non-3-ene-7,9-diones 5 by RCM reaction of 3 catalyzed by Bis(tricyclohexylphosphine)benzilidine ruthenium dichloride 4

Entry, 5	R^{1}	$\mathrm{R}^{\mathbf{2}}$	Yield, \%
a	Phenyl	Benzyl	52
b	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$	iso-Propyl	63
c	t-Butyl	iso-Butyl	55
d	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$	Allyl	45
e	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$	Benzyl	74
f	cyclo-Hexyl	Methyl	65
g	Phenyl	N-Allyl-3-indolylmethyl	65

Acknowledgments: The author would like to thank Boehringer Ingelheim Pharmaceuticals, Inc. for a postdoctoral fellowship and Dr. Vittorio Farina for helpful suggestions.

References and Notes

* Present address: R. W. Johnson Pharmaceutical Research Institute, Drug Discovery, Spring House, PA 19477, USA

1. Grubbs, R.H.; Miller, S.J.; Fu, G.C. Acc. Chem. Res. 1995, 28, 446 (b) Schwab, P.; Grubbs, R.H.; Ziller, J.W. J. Am. Chem. Soc. 1996, 118, 100 (c) Schwab, P.; France, M.B.; Ziller, J.W.; Grubbs, R.H. Angew. Chem. Int. Ed. Engl. 1995, 34, 2039
2. Schrock, R.R.; Murdzek, J.S.; Bazan, G.C.; Robbins, J.; DiMare, M.; O'Regan, M. J. Am. Chem. Soc. 1990, 112, 3875
3. (a) Crimmins, M.T.; King, B.W. J. Org. Chem. 1996, 61, 4192 (b) Holder, S.; Blechert, S. Synlett. 1996, 6, 505
(c) Schneider, M.S.; Junga, H.; Blechert, S. Tetrahedron 1995, 51, 13003
4. Martin, S.F.; Chen, H.-J.; Courtney, A.K.; Liao, Y.; Patzel, M.; Ramser, M.N.; Wagman, A.S. Tetrahedron 1996, 52, 7251 (b) Huwe, C.M.; Blechert, S. Tetrahedron Lett. 1995, 36, 1621
5. Houri, A.F.; Xu, Z.; Cogan, D.; Hoveyda, A.H.; J. Am. Chem. Soc. 1995, 117, 2943
6. The catalyst 4 was purchased from Strem Chemicals, Inc.
7. Lopez-Rodriguez, M.L.; Morcillo, M.J.; Garrido, M.; Banhamu, B.; Perez, V.; de la Campa, J.G. J. Org. Chem. 1994, 59, 1583 (b) Winterfeld, K.; Schuler, H.; Arch. der Pharm. 1960, 293, 203
8. Evnin, A.B.; Lam, A.; Blyskal, J. J. Org. Chem. 1970, 35, 3097
9. Albertson, N.F. Org. React. 1962, 12, 157
10. (a) Arrieta, A.; Palomo, C Synthesis, 1982, 1050 (b) Nowick, J.S.; Holmes, D.L.; Noronha, G.; Smith, E.M.; Nguen, T.M.; Huang, S.-L. J. Org. Chem., 1996, 61, 3929
11. In the typical procedure for the synthesis of 5 a solution of $3(1 \mathrm{mmol})$ in 20 ml of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under Ar atmosphere was heated to reflux and a solution of $4(0.01 \mathrm{mmol})$ in $5 \mathrm{ml} \mathrm{CH}{ }_{2} \mathrm{Cl}_{2}$ was added by syringe in one portion. The reaction mixture was refluxed overnight, evaporated and the remaining brown residue was subjected to column chromatography (silica, hexanes-ethyl acetate mixture as eluent).
12. The new compounds 3 and 5 were characterized by NMR and PB-EI MS spectra and gave elemental analyses in accord with the calculated values.
Selected data for 5 g : white crystals, m.p. $130-132^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-$ $7.18(\mathrm{~m}, 6 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.83-6.79(\mathrm{~m}, 2 \mathrm{H}), 5.95-5.84(\mathrm{~m}, 3 \mathrm{H}), 5.10(\mathrm{dd}, \mathrm{J}=10.3 \mathrm{and} 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{dd}, \mathrm{J}=$ 17.0 and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{dt}, \mathrm{J}=5.3$ and $1.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.53-4.40(\mathrm{~m}, 1 \mathrm{H}), 3.92-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{~d}, \mathrm{~J}=14.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.32(\mathrm{~d}, \mathrm{~J}=14.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($69.2 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.3,153.6,135.9,133.0,131.3,128.6,128.0$, $127.8,126.8,126.0,122.8,122.3,121.8,119.3,118.8,117.1,109.5,107.5,61.5,48.5,38.1,31.1,29.7$. PB-EI MS: $\mathrm{m} / \mathrm{z} 397\left(\mathrm{M}^{+}\right)$. Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, $75.55 ; \mathrm{H}, 5.83 ; \mathrm{N}, 10.57$. Found: C, $75.29 ; \mathrm{H}, 5.89 ; \mathrm{N}$, 10.49.
